
	

1	
	

COURSE	DESCRIPTION	CARD	-	SYLLABUS	

Course	name		
Software	Evolution	and	Maintenance	
Course	
Field	of	study	
Computing	
Area	of	study	(specialization)	
Software	Engineering	
Level	of	study		
Second-cycle	studies	
Form	of	study	
full-time	

Year/Semester	
1/1	
Profile	of	study		
		
Course	offered	in	
English	
Requirements		
	

	Number	of	hours	
Lecture	
30	
Tutorials	

					

	

Laboratory	classes	
30	
Projects/seminars	

					

	

Other	(e.g.	online)	

					

	

Number	of	credit	points	
6	
Lecturers

Responsible	for	the	course/lecturer:	
Bartosz	Walter,	Ph.D.

Responsible	for	the	course/lecturer:	

					

	Prerequisites	
Student	should	have	knowledge	concerning	software	development	processes	and	models,	and	basic	
skills	in	programming	(at	least	in	reading	the	code).	They	should	also	be	capable	of	continuous	learning	
and	knowledge	acquisition	from	selected	sources,	as	well	as	express	the	readiness	for	collaborating	in	
small	teams.	

Course	objective	
The	objective	for	this	course	is	to	provide	the	students	with	knowledge	on	the	processes	of	evolution	of	
software	systems,	the	types	of	evolutionary	changes,	and	reacting	to	the	evolution	by	planned	and	
conscious	maintenance	activities.		Students,	upon	completing	the	course,	are	expected	to	evaluate	
maintainability	of	a	software	system,	apply	changes	and	verify	their	correctness,	as	well	as	perform	code	
reviews	and	apply	refactorings.	

Course-related	learning	outcomes		
Knowledge	
1.	Students	posesses	well-grounded	knowledge	on	the	software	system's	life	cycle.	



	

2	
	

2.	Student	posessess	knowledge	on	selected	methods,	languages	and	notations	used	for	developing	
software.	

3.	Student	posesses	knowledge	on	design	patterns	and	best	practices	in	software	design	

4.	Student	knows	selected	metrics	and	measurement	methods	for	software	quality	characteristics	
(concerning	the	size,	complexity,	etc.)	

Skills	
1.	Student	can	re-design,	fix	or	update	a	software	system.	

2.	Student	can	evaluate	the	design	quality	and	analyze	its	impact	on	a	software	system.	

Social	competences	
1.	Student	can	effectively	collaborate	in	small	teams.	

2.	Student	enhances	their	knowledge,	based	on	commonly	available	source,	making	a	conscious	
selection	of	them.	

Methods	for	verifying	learning	outcomes	and	assessment	criteria	
Learning	outcomes	presented	above	are	verified	as	follows:	
The	knowledge	presented	during	the	lecture	will	be	verified	two-fold:	(i)	by	solving	during	the	lectures	in	
small	teams	two	design	case	studies	and	discussing	their	pros	and	cons,	and	(ii)	during	the	final	
examination	(multilple-choice	test	that	verifies	the	understading	of	the	lectures).	The	two	forms	would	
be	weighted	30:70,	and	the	passing	score	is	50%.	The	list	of	examination	problems	will	be	provided	
during	the	last	lecture	within	the	course.		

The	skills	acquired	during	laboratory	classes	will	be	verified	by	3-4	group	assignments,	concerning	the	
issues	presented	and	discussed	during	the	classes.	The	passing	score	is	also	50%.	

Programme	content	

1.	Lecture:	Overview	of	models	of	software	evolution.	Measurement	and	metrics	for	evolution	and	
maintenance	of	software	artifacts.	Types	of	maintenance	activities.	Approaches	to	maintainability	
evaluation.	Methods	of	restructuring	and	refactoring	legacy	systems.	Observation	and	analysis	of	
changes	in	software	repositories.	

2.	Laboratory	classes:	Observation	of	software	evolution.	Collecting	and	analyzing	evolution	metrics.	
Flaws	in	software	maintenance.	Maintaining	a	software	system	in	an	iterative	software	development	
lifecycle.	Techniques	of	refactoring.		

Teaching	methods	

1.	Lecture:	multimedia	presentation,	discussion	

2.	Laboratory	classes:	presentation	supported	by	provided	examples,	programming	the	software	and	
design	assignments	in	groups,	discussion		



	

3	
	

Bibliography	

Basic	
1.	T.	Mens,	S.	Demeyer:	Software	Evolution.	Springer	Science	and	Business	Media,	2008	

2.	R.	C.	Martin:	Czysty	kod.	Podręcznik	dobrego	programisty.	Helion,	2010	

3.	J.	Visser	et	al.:	Building	Maintainable	SOftware.	Java	Edition.	Ten	Guidelines	for	Future-Proof	Code.	
O'Reilly	Media,	2016.	

	

Additional		
1.	M.	Fowler:	Refactoring.	Improving	the	design	of	existing	code.	Addison-Wesley,	2018.	

2.	Priyadarshi	Tripathy,	Kshirasagar	Naik:	Software	evolution	and	maintenance.	A	practitioner's	
approach.	Addison	Wiley,	2015	

Breakdown	of	average	student's	workload	

	 Hours	 ECTS	
Total	workload	 150	 6,0	
Classes	requiring	direct	contact	with	the	teacher	 61	 2,0	
Student's	own	work	(literature	studies,	preparation	for	
laboratory	classes/tutorials,	preparation	for	tests/exam,	project	
preparation)	1	

89	 4,0	

	

																																																								
1	delete	or	add	other	activities	as	appropriate	


